Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 124, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229402

RESUMO

Haloarchaea, like many other microorganisms, have developed defense mechanisms such as universal stress proteins (USPs) to cope with environmental stresses affecting microbial growth. Despite the wide distribution of these proteins in Archaea, their biochemical characteristics still need to be discovered, and there needs to be more knowledge about them focusing on halophilic Archaea. Therefore, elucidating the role of USPs would provide valuable information to improve future biotechnological applications. Accordingly, transcriptional expression of the 37 annotated USPs in the Haloferax mediterranei genome has been examined under different stress conditions. From a global perspective, finding a clear tendency between particular USPs and specific stress conditions was not possible. Contrary, data analysis indicates that there is a recruitment mechanism of proteins with a similar sequence able to modulate the H. mediterranei growth, accelerating or slowing it, depending on their number. In fact, only three of these USPs were expressed in all the tested conditions, pointing to the cell needing a set of USPs to cope with stress conditions. After analysis of the RNA-Seq data, three differentially expressed USPs were selected and homologously overexpressed. According to the growth data, the overexpression of USPs induces a gain of tolerance in response to stress, as a rule. Therefore, this is the only work that studies all the USPs in an archaeon. It represents a significant first base to continue advancing, not only in this important family of stress proteins but also in the field of biotechnology and, at an industrial level, to improve applications such as designing microorganisms resistant to stress situations. KEY POINTS: • Expression of Haloferax mediterranei USPs has been analyzed in stress conditions. • RNA-seq analysis reveals that most of the USPs in H. mediterranei are downregulated. • Homologous overexpression of USPs results in more stress-tolerant strains.


Assuntos
Haloferax mediterranei , Haloferax mediterranei/genética , Proteínas de Choque Térmico/metabolismo , Archaea
2.
Genes (Basel) ; 12(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070366

RESUMO

Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Haloferax mediterranei/genética , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Proteínas Arqueais/genética , Genoma Arqueal , Haloferax mediterranei/metabolismo , Nitrogênio/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico , Fatores de Transcrição/genética
3.
Microorganisms ; 9(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567751

RESUMO

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32-52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.

4.
Biomolecules ; 10(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003558

RESUMO

Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Microbiologia Ambiental , Proteínas de Choque Térmico/genética , Adaptação Fisiológica/genética , Resposta ao Choque Térmico/genética , Salinidade , Estresse Fisiológico/genética
5.
Int. microbiol ; 15(3): 111-119, sept. 2012. graf, tab
Artigo em Inglês | IBECS | ID: ibc-136881

RESUMO

Haloferax mediterranei is a denitrifying halophilic archaeon able to reduce nitrate and nitrite under oxic and anoxic conditions. In the presence of oxygen, nitrate and nitrite are used as nitrogen sources for growth. Under oxygen scarcity, this haloarchaeon uses both ions as electron acceptors via a denitrification pathway. In the present work, the maximal nitrite concentration tolerated by this organism was determined by studying the growth of H. mediterranei in minimal medium containing 30, 40 and 50 mM nitrite as sole nitrogen source and under initial oxic conditions at 42 °C. The results showed the ability of H. mediterranei to withstand nitrite concentrations up to 50 mM. At the beginning of the incubation, nitrate was detected in the medium, probably due to the spontaneous oxidation of nitrite under the initial oxic conditions. The complete removal of nitrite and nitrate was accomplished in most of the tested conditions, except in culture medium containing 50 mM nitrite, suggesting that this concentration compromised the denitrification capacity of the cells. Nitrite and nitrate reductases activities were analyzed at different growth stages of H. mediterranei. In all cases, the activities of the respiratory enzymes were higher than their assimilative counterparts; this was especially the case for NirK. The denitrifying and possibly detoxifying role of this enzyme might explain the high nitrite tolerance of H. mediterranei. This archaeon was also able to remove 60 % of the nitrate and 75 % of the nitrite initially present in brine samples collected from a wastewater treatment facility. These results suggest that H. mediterranei, and probably other halophilic denitrifying Archaea, are suitable candidates for the bioremediation of brines with high nitrite and nitrate concentrations (AU)


No disponible


Assuntos
Haloferax mediterranei/enzimologia , Haloferax mediterranei/crescimento & desenvolvimento , Haloferax mediterranei/metabolismo , Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Comércio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Recuperação e Remediação Ambiental/métodos , Oxirredução , Águas Residuárias/microbiologia
6.
Int Microbiol ; 15(3): 111-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23847815

RESUMO

Haloferax mediterranei is a denitrifying halophilic archaeon able to reduce nitrate and nitrite under oxic and anoxic conditions. In the presence of oxygen, nitrate and nitrite are used as nitrogen sources for growth. Under oxygen scarcity, this haloarchaeon uses both ions as electron acceptors via a denitrification pathway. In the present work, the maximal nitrite concentration tolerated by this organism was determined by studying the growth of H. mediterranei in minimal medium containing 30, 40 and 50 mM nitrite as sole nitrogen source and under initial oxic conditions at 42 degrees C. The results showed the ability of H. mediterranei to withstand nitrite concentrations up to 50 mM. At the beginning of the incubation, nitrate was detected in the medium, probably due to the spontaneous oxidation of nitrite under the initial oxic conditions. The complete removal of nitrite and nitrate was accomplished in most of the tested conditions, except in culture medium containing 50 mM nitrite, suggesting that this concentration compromised the denitrification capacity of the cells. Nitrite and nitrate reductases activities were analyzed at different growth stages of H. mediterranei. In all cases, the activities of the respiratory enzymes were higher than their assimilative counterparts; this was especially the case for NirK. The denitrifying and possibly detoxifying role of this enzyme might explain the high nitrite tolerance of H. mediterranei. This archaeon was also able to remove 60% of the nitrate and 75% of the nitrite initially present in brine samples collected from a wastewater treatment facility. These results suggest that H. mediterranei, and probably other halophilic denitrifying Archaea, are suitable candidates for the bioremediation of brines with high nitrite and nitrate concentrations.


Assuntos
Haloferax mediterranei/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Sais/metabolismo , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Recuperação e Remediação Ambiental/métodos , Haloferax mediterranei/enzimologia , Haloferax mediterranei/crescimento & desenvolvimento , Nitrito Redutases/metabolismo , Oxirredução , Águas Residuárias/microbiologia
7.
Biochem Soc Trans ; 39(6): 1844-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103537

RESUMO

In the absence of ammonium, many organisms, including the halophilic archaeon Haloferax volcanii DS2 (DM3757), may assimilate inorganic nitrogen from nitrate or nitrite, using a ferredoxin-dependent assimilatory NO3⁻/NO2⁻ reductase pathway. The small acidic ferredoxin Hv-Fd plays an essential role in the electron transfer cascade required for assimilatory nitrate and nitrite reduction by the cytoplasmic NarB- and NirA-type reductases respectively. UV-visible absorbance and EPR spectroscopic characterization of purified Hv-Fd demonstrate that this protein binds a single [2Fe-2S] cluster, and potentiometric titration reveals that the cluster shares similar redox properties with those present in plant-type ferredoxins.


Assuntos
Elétrons , Ferredoxinas/metabolismo , Haloferax volcanii/metabolismo , Nitratos/metabolismo , Sequência de Aminoácidos , Ferredoxinas/química , Dados de Sequência Molecular , Nitritos/metabolismo , Análise Espectral
8.
Saline Syst ; 6: 10, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20942947

RESUMO

BACKGROUND: The extraction of salt from seawater by means of coastal solar salterns is a very well-described process. Moreover, the characterization of these environments from ecological, biochemical and microbiological perspectives has become a key focus for many research groups all over the world over the last 20 years. In countries such as Spain, there are several examples of coastal solar salterns (mainly on the Mediterranean coast) and inland solar salterns, from which sodium chloride is obtained for human consumption. However, studies focused on the characterization of inland solar salterns are scarce and both the archaeal diversity and the plant communities inhabiting these environments remain poorly described. RESULTS: Two of the inland solar salterns (termed Redonda and Penalva), located in the Alto Vinalopó Valley (Alicante, Spain), were characterized regarding their geological and physico-chemical characteristics and their archaeal and botanical biodiversity. A preliminary eukaryotic diversity survey was also performed using saline water. The chemical characterization of the brine has revealed that the salted groundwater extracted to fill these inland solar salterns is thalassohaline. The plant communities living in this environment are dominated by Sarcocornia fruticosa (L.) A.J. Scott, Arthrocnemum macrostachyum (Moris) K. Koch, Suaeda vera Forsk. ex Gmelin (Amaranthaceae) and several species of Limonium (Mill) and Tamarix (L). Archaeal diversity was analyzed and compared by polymerase chain reaction (PCR)-based molecular phylogenetic techniques. Most of the sequences recovered from environmental DNA samples are affiliated with haloarchaeal genera such as Haloarcula, Halorubrum, Haloquadratum and Halobacterium, and with an unclassified member of the Halobacteriaceae. The eukaryote Dunaliella was also present in the samples. CONCLUSIONS: To our knowledge, this study constitutes the first analysis centered on inland solar salterns located in the southeastern region of Spain. The results obtained revealed that the salt deposits of this region have marine origins. Plant communities typical of salt marshes are present in this ecosystem and members of the Halobacteriaceae family can be easily detected in the microbial populations of these habitats. Possible origins of the haloarchaea detected in this study are discussed.

9.
Biochim Biophys Acta ; 1804(7): 1476-82, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20226884

RESUMO

NifS-like proteins are pyridoxal 5'-phosphate (PLP)-dependent enzymes involved in sulphur transfer metabolism. These enzymes have been catalogued as cysteine desulphurases (CDs) which catalyse the conversion of L-cysteine into L-alanine and an enzyme-bound persulphide radical. This reaction, assisted by different scaffold protein machineries, seems to be the main source of sulphur for the synthesis of essential cofactors of the [Fe-S] cluster. CDs genes have been detected in the tree domains of life, but, up until now, there has been no biochemical characterisation or study into the physiological role of this enzyme in haloarchaea. In this study, we have cloned, expressed and characterised a cysteine desulphurase (SufS) from Haloferax volcanii and demonstrated that this protein is able to reconstitute the [Fe-S] cluster of halophilic ferredoxin.


Assuntos
Archaea/metabolismo , Regulação Bacteriana da Expressão Gênica , Haloferax/metabolismo , Proteínas Ferro-Enxofre/química , Liases/genética , Liases/metabolismo , Primers do DNA/química , Bases de Dados de Proteínas , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Nucleotídeos/química , Dobramento de Proteína , Proteínas Recombinantes/química , Raios Ultravioleta
10.
Saline Syst ; 4: 9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18593475

RESUMO

The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments.The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3(-), NO2(-) or NH4(+) as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...